
A High Performance Computing Method for Noise
Cross-Correlation Functions of Seismic Data

Junwei Zhou∗, Qian Wei†, Chao Wu‡¶, Guangzhong Sun§
∗School of Earth and Space Sciences, University of Science and Technology of China

†School of Physical Sciences, University of Science and Technology of China
‡Network and Information Center, University of Science and Technology of China

§School of Computer Science and Technology, University of Science and Technology of China
Email:{zjw330501, wq0320}@mail.ustc.edu.cn, {wuchao15, gzsun}@ustc.edu.cn

¶Corresponding Author

Abstract—Calculation of noise cross-correlation functions
(NCF) plays an important role in ambient noise imaging which
is a vital seismic method to obtain Earth inner structures. To
raise the resolution of the imaging results, we need more seismic
data for imaging. However, as the size of seismic data increases,
the serial algorithm for NCF calculation becomes much more
time-consuming. Thus, how to accelerate the NCF calculation
becomes a key problem in ambient noise imaging. Based on
the analysis of serial algorithm, we proposed a new parallel
algorithm for NCF calculation using NVIDIA GPU platform. In
addition, we improved reading and writing strategy to reduce I/O
consumption. Experimental results on real seismic data show the
effectiveness of our method. The parallel program achives about
1861 times speedup.

Index Terms—Noise Cross-Correlation Function, Seismology,
CUDA, GPU

I. INTRODUCTION

Ambient noise imaging is an important method in seis-

mology, which uses noise data recorded by large amounts of

seismometers to obtain underground structures [1]. Calculating

the noise cross-correlation functions (NCF) between seismic

data is an essential part of ambient noise imaging [2]. Nowa-

days, more and more large-scale seismic observation arrays

with hundreds or even thousands of seismometers are widely

deployed, which operate for several months to several years,

recording tremendous amounts of seismic data. This offers

an opportunity to get much more accurate Earth’s structural

information than before [3]. However, since the data size is

so large, it often takes weeks or even months to calculate the

NCF, which then becomes a obstacle in scientific researches.

In recent years, advancing GPUs and parallel computing

methods have been widely employed in scientific computing,

which greatly accelerates computing. Meanwhile reducing I/O

cost [4]–[6] also plays an important role in high performance

scientific computing.

In this paper, we manage to accelerate the NCF calculation

on NVIDIA GPU platform. In the following sections, we

firstly introduce ambient noise imaging, NCF calculation and

gpu computing briefly. Then, we analyze the serial algorithm

of NCF calculation. Next, we propose our acceleration meth-

ods for the hotspot of original NCF algorithm. After that, We

propose customary strategies to reduce I/O consumption. In the

last section, we show the experimental results which exhibit

the effectiveness of the proposed methods.

II. BACKGROUND

A. Ambient noise imaging

Traditional seismological methods usually use the informa-

tion carried by seismic phases, which are ”valid signals” in

seismic data, to resolve structures in the Earth. And it has

been supposed that noise accompanying the ”valid signals”

is useless and decreases the accuracy of the result. To raise

signal-noise ratio, seismologists apply various algorithms to

suppress the noise in data [7].

In recent years, however, instead of removing the noise,

more and more researches manage to analyze seismic noise to

obtain new information about Earth’s interior [8]. This gives

birth to a new field named seismic ambient noise imaging.

The utilization of seismic noise is based on the coherence

between different seismic records. By doing cross-correlation

calculation of long-time seismic records, we can get NCF

between them which characterizes their coherence. Then, the

time derivatives of NCF are calculated to obtain empirical

Green’s function [9].

Green’s function is the distribution of displacement field

under the action of unit impulse. And through the convolution

of Green’s function and some seismic source’s function, the

distribution of displacement field under the action of that

source can be determined. Thus, Green’s function is very

important in seismology since it contains the information of

the medium inside the Earth. By calculating NCF and its

time derivatives, we can acquire Green’s function directly, and

apply it in the subsequent seismological researches.

B. NCF calculation algorithm

Given two seismic signals x(n), y(n), the NCF between

them is

rxy(n) =

+∞∑

m=−∞
x(m)y(m+ n) = x(−n) ∗ y(n) (1)

which is exactly the convolution of x(n)’s reverse and y(n).
Since the convolution operation is time consuming. In

signal processing, the NCF calculation is often performed in

1179

2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable
Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom)

978-0-7381-2646-3/21/$31.00 ©2021 IEEE
DOI 10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00162

frequency domain, where the convolution in time domain is

replaced by more time-saving multiplication.

For seismic signal x(n), fast Fourier transform (FFT) can

be applied to transform it to its frequency domain counterpart

X(f) = FFT (x(n)) (2)

The same operation is performed to y(n) and we can get Y (f).
Then, the NCF in the frequency domain is calculated by

RXY (f) = X(f)Y (f) (3)

Finally, the time domain NCF can be calculated from

RXY (f) by inverse fast Fourier transform (IFFT)

rxy(n) = IFFT (RXY (f)) (4)

C. introduction to CUDA and CUFFT

CUDA is an extension of C/C++ language for parallel

programming on NVIDIA GPUs. CUDA organizes threads

hierarchically in blocks and grids. Each thread has its own

local memory, and all threads in the same block can access

the shared memory of that block. In addition, all threads

can access data from the same global memory. Using global

and shared memory, CUDA provides hierarchy parallelism

between threads [10]. CUFFT is a library for computing FFT

on NVIDIA GPUs. It employs Cooley-Tukey algorithm to

accelerate the calculation of FFT [11].

III. SERIAL ALGORITHM ANALYSIS

A. Algorithm

As Fig. 1 shows, the serial algorithm of NCF calculation

consists of two parts: single station part and NCF part. The

single station part takes every station’s seismic data as input,

and outputs the station’s frequency spectrum data. The NCF

part is calculated on each station pair’s frequency spectrum

and outputs NCF of each station pair.

In the single station part, after reading a station’s seismic

data, a sliding window segmentation is used to divide the

original data into several segments. Each time domain segment

is then transformed to frequency spectrum using FFT.

In the NCF part, each station pair’s frequency spectrum are

multiplied element-wise. Since the data has been segmented,

the multiplication should be performed segment by segment.

Then, IFFT is applied to each segment’s results of multiplica-

tion, which produces NCF of each time segment. Next, NCF

of all time segments are averaged. The output is the final NCF

result between the input station pair.

B. Time complexity analysis

For N stations, the single station part of above algorithm

is applied to each station’s data, so this part will do N times.

For each seismic signal, we divide it into M segments. Each

segment’s length is Ts, and neighboring segments have To

overlap. Thus, the total length of each signal T is

T = MTs + (M − 1)To (5)

For each signal, the segmentation and concatenation’s time

complexity is O(T). The time complexity of M segments’

FFT is O(M · Tslog(Ts)). Therefore, the time complexity of

the single station part is

O(N(T +MTslog(Ts)))

= O(N(MTs + (M − 1)To +MTslog(Ts))
(6)

which is asymptotically equal to O(NM(Ts+To+Tslog(Ts))
And the NCF part is done for each station pair. Thus, the

calculation needs to be done
N(N − 1)

2
times. For M seismic

spectrum segments of length Fs, where Fs =
Ts + 1

2
, the time

complexity of multiplication and averaging is O(MTs), and

the time complexity of M segments’ IFFT is O(MTslog(Ts)).
Therefore, the time complexity of the NCF part is

O(
N(N − 1)

2
(MTs +MTslog(Ts))) (7)

which is asymptotically equal to O(N2MTs(1 + log(Ts))).
In consequence, when N is very large, the time consumption

of NCF part will be dominant in the total execution time.

Because of that, in this paper, we will focus on accelerating

the NCF part.

IV. CUDA PARALLEL ALGORITHM

A. Reading data

In the NCF part of the serial algorithm, since every station

participates in N − 1 times NCF calculation of a certain day,

one station’s daily seismic data will be read N−1 times. Such

redundant reading results in waste of time.

Like the NCF part, in parallel algorithm, we first read

stations’ 1-day frequency spectrum data into the memory.

Based on the size of real seismic data, we have two strategies

to read in data. The first one reads 1 station pair’s data of all

day in one execution and outputs 1 station pair’s all-day NCF,

while all station pairs being processed serially. The second one

reads all stations’ data of 1 day in one execution and outputs

all station pairs’ 1-day NCF, while all days being processed

serially.

Compared to the former reading strategy, the latter one

consumes much less time because it avoids redundant reading.

For N stations, if we use the former strategy, once a station

is involved in the NCF calculation, all-day data of that station

will be read in. Since one station participates N − 1 times

NCF calculation, its all-day data will be read in for N − 1
times, which is the same as the serial algorithm. However, if

we use the latter strategy, all stations’ 1-day data will only be

used once when calculating NCF on that day. Thus, there is no

redundant reading of one station’s daily data. In other words,

this reading strategy will reduce reading time to
1

N − 1
of

former one. Consequently, we apply the latter reading strategy

in this paper.

B. segment multiplication

After copying the frequency spectrum data into GPU mem-

ory, we will do segment multiplication for
N(N − 1)

2
station

pairs. However, since the station number N is very large, we

1180

Fig. 1. Calculation flow of serial algorithm

can’t do all times segment multiplication in parallel because

of the limitation of GPU memory. Thus, at a time, we choose

to do part of them in parallel.

Algorithm 1
Input: N ; Output: sp[N(N−1)

2 , 2]

1: k ← 0
2: for i = 0 to N − 2 do
3: for j = i+ 1 to N − 1 do
4: sp[k, 0]← i
5: sp[k, 1]← j
6: k ← k + 1
7: end for
8: end for
9: return sp

As Algorithm 1 shows, before segment multiplication, we

will create sp which is a list of all station pairs. Every time

we do parallel segment multiplication, we will calculate for L
station pairs, as shown in Algorithm 2 line 10 to line 20. The

input of Algorithm 2 is N station’s frequency spectrum data

F , and the output of the segment multiplication is Cf , which

is L station pairs’ NCF of M segments in frequency domain.

Ts is point number of FFT, whereas Fs is output length of

FFT, dsatisfying Fs = Ts/2 + 1 when Ts is even.

C. segment IFFT

We do IFFT to the multiplication results Cf segment by

segment with CUFFT library. After IFFT, we obtain Ct in

Algorithm 2. Each segment of Ct is the NCF of corresponding

station pair’s segments.

D. averaging

The parallel averaging process is shown in Algorithm 2

line 23 to line 35. For the IFFT output Ct, we average

corresponding data points of the segments in the same line

and output lo rows of C. When loops of station pairs ends,

we can obtain the whole C which is the NCF of
N(N − 1)

2
station pairs.

E. Writing results

In the case of serial calculation, only one station pair’s NCF

can be calculated after one execution of program. Thus, every

station pair’s NCF data is written as an individual file. This

writing strategy decreases writing efficiency.

Different from the serial method, after our parallel program

is executed once, we can obtain all station pairs’ NCF results.

Thus, instead of splitting the results into many small files,

we write all the data into one file. This improvement might

save some output time and alleviate the problem of high I/O

consumption to some extent. We will analyze the effect of this

improvement in the experiments section.

F. Time complexity analysis

For N stations, our method carried out �N(N − 1)

2L
� loops.

In each loop, NCF is calculated for L station pairs. The

time complexity of segment multiplication is O(1), since

each element-wise multiplication can be assigned to dif-

ferent threads. The time complexity of segment IFFT is

O(Tslog(Ts)). For one station pair’s M segments, the time

complexity of averaging is O(MTs), and different station

pairs’ averaging is done in parallel. Therefore, the time com-

plexity of our method is

O(�N(N − 1)

2L
�(Tslog(Ts) +MTs))

= O(�N(N − 1)

2L
�Ts(log(Ts) +M))

(8)

which is much smaller than serial NCF.

V. EXPERIMENTS

A. lab environment

We use a data set containing 243 stations. Each station’s

frequency spectrum data has 23 segments, and each segment

contains 4097 complex data points. In the writing step, 7201

data points at specified position out of all the 8192 data points

are written to the output file.

The experiments are carried out on Tesla V100 GPU and

Intel(R) Xeon(R) E5-2667 v3 CPU.

1181

Algorithm 2
Input: N,M,L, Ts, F [N, (Ts

2 + 1) ·M], sp[N(N−1)
2 , 2],

gridDim, blockDim;

Output: C[N(N−1)
2 , Ts]

1: Fs ← Ts

2 + 1

2: n← �N(N−1)
2L �+ 1

3: for k = 0 to n− 1 do
4: if k < n− 1 then
5: lo← L
6: else
7: lo← N(N−1)

2 − (n− 1) · L
8: end if
9: r ← k · L

10: y ← blockIdx.y
11: while y < lo do
12: x← blockIdx.x · blockDim.x+ threadIdx.x
13: while x < Fs ·M do
14: SA ← sp[r + y, 0]
15: SB ← sp[r + y, 1]
16: Cf [y, x]← ComplexMul(ComplexConj(

F [SA, x]), F [SB , x])
17: x← x+ gridDim.x · blockDim.x
18: end while
19: y ← y + gridDim.y
20: end while
21: Ct ← segment IFFT (Cf)
22: y ← blockIdx.y
23: while y < lo do
24: x← blockIdx.x · blockDim.x+ threadIdx.x
25: while x < Ts do
26: sum← 0.0
27: for i = 0 to M − 1 do
28: sum← sum+ Ct[y, x+ i · Ts]
29: end for
30: C[r + y, x]← sum

M
31: x← x+ gridDim.x · blockDim.x
32: end while
33: y ← y + gridDim.y
34: end while
35: end for
36: return C

B. experimental results and analysis

The experimental results is shown in TABLE I. Since

parallel 1 and parallel 2 only differs in output strategy, so

they have the same input time and calculation time.

In the results, we can see that parallel algorithm accelerate

the calculation by 1861 times. In addition, owing to the avoid-

ance of redundant reading, parallel algorithm reduces much

input time, and the input acceleration rate 214 is approximately

equal to N − 1, which agrees to the theoretical analysis.

As for the difference of two parallel methods, parallel 2

reduces more output time than parallel 1. In terms of the total

time, parallel 1’s acceleration rate is 737 and parallel 2’s is

1214. Thus, we can conclude that writing all NCF data to one

file can accelerate the output process.

TABLE I
EXPERIMENTAL RESULTS

Methods serial parallel 1 parallel 2

Total time(s) 2534.650 3.437 2.088
Input time(s) 55.895 0.261 0.261

Calculation time(s) 2473.392 1.329 1.329
Output time(s) 5.363 1.846 0.498
Total acc. rate - 737 1214
Input acc. rate - 214 214

Calculation acc. rate - 1861 1861
Output acc. rate - 2.9 10.8

parallel 1: every NCF data is written to an individual file.
parallel 2: all NCF data is written to one file.

VI. CONCLUSION

In this paper, we manage to realize the acceleration of

NCF calculation. After analyzing the serial algorithm for NCF

calculation, we focus on the acceleration of the algorithm’s

NCF part. We propose a new parallel method using CUDA

and CUFFT and alter I/O strategies. In the experiments, the

total acceleration ratio of our algorithm is 1214. More impor-

tantly, our algorithm accelerates the calculation part by 1861

times. Such results verifies our method’s good acceleration

performance on NCF calculation.

ACKNOWLEDGMENT

This work is supported by National Natural Science Foun-

dation of China (No.61772485).

REFERENCES

[1] Weaver, Richard, and L. ”Information from Seismic Noise. ” Science
(2005).

[2] N. Li, W. Wang, B. Wang, ”Speeding the Nine-component Cross Cor-
relation Function Calculation Using Cloud-computing and Its Application
on the Dataset of China Array-NE Tibet.” Earthquake Research in China,
2018

[3] Lin, F. C. , et al. ”Complex and variable crustal and uppermost mantle
seismic anisotropy in the western United States.” Nature Geoscience
4.1(2011):55-61.

[4] Zhang, L., Qiu, M., Tseng, WC. et al. Variable Partitioning and
Scheduling for MPSoC with Virtually Shared Scratch Pad Memory.
J Sign Process Syst Sign Image Video Technol 58, 247–265 (2010).
https://doi.org/10.1007/s11265-009-0362-3

[5] Y. Guo, Q. Zhuge, J. Hu, M. Qiu and E. H. -. Sha, ”Optimal Data
Allocation for Scratch-Pad Memory on Embedded Multi-core Systems,”
2011 International Conference on Parallel Processing, 2011, pp. 464-471.

[6] M. Qiu, Z. Chen and M. Liu, ”Low-Power Low-Latency Data Allocation
for Hybrid Scratch-Pad Memory,” in IEEE Embedded Systems Letters, vol.
6, no. 4, pp. 69-72, Dec. 2014.

[7] Rost, and Sebastian. ”ARRAY SEISMOLOGY: METHODS AND AP-
PLICATIONS.” Reviews of Geophysics 40.3(2002):2-1-2-27.

[8] Yao, H. , D. Van , and M. D. Hoop . ”Surface-wave array tomography in
SE Tibet from ambient seismic noise and two-station analysis – I. Phase
velocity maps.” Geophysical Journal International (2006).

[9] Wapenaar, K. . ”Retrieving the Elastodynamic Green’s Function of an
Arbitrary Inhomogeneous Medium by Cross Correlation.” Physical Review
Letters 93.25(2005):254301.

[10] Nickolls, John R , et al. ”Scalable parallel programming with CUDA.”
Queue (2008).

[11] cuFFT :: CUDA Toolkit Documentation.
https://docs.NVIDIA.com/cuda/cufft/, Dec. 2019

1182

