
Vectorization and Distribution with Deep Reinforcement Learning

Junwei Zhou
University of Michigan, Ann Arbor

Tan Tao
University of Michigan, Ann Arbor

Xinyi Liu
University of Michigan, Ann Arbor

Leheng Lu
University of Michigan, Ann Arbor

Luoxi Meng
University of Michigan, Ann Arbor

Abstract
LLVM’s baseline models for loop optimization are

heuristic-based in nature and often lead to suboptimal
performance. We use Code2Vec [1] to generate code
embeddings that characterize loops. With embeddings
plus static features generated from LLVM pass, we train
a reinforcement learning (RL) model that predicts the
loop optimization factors to minimize execution time.
We train the model on the loop dataset extracted from
LLVM test suite and tune hyperparameters. The inference
results show the effectiveness of adding distribution as an
optimization factor, but the static features are too trivial
to be helpful.

1 Introduction

In this project, we explore how we can leverage
RL to guide loop optimization in LLVM. We observe
that LLVM’s cost models that predict loop optimiza-
tion factors will lead to sub-optimal performance. With
Code2Vec and PPO [4], it becomes possible to train an
RL model to solve this problem. We use NeuroVector-
izer [3], an existing framework that optimizes loop vector-
ization with RL, and further expand the search space by
introducing loop distribution as a new factor. We experi-
ment with different combinations of optimization factors
and feature sets, and tune hyperparameters to achieve
optimal performance.

2 Backgroud

2.1 Vectorization and Distribution
2.1.1 Intro

Modern CPU and GPU cores use single instruction,

multiple data (SIMD) execution units to achieve higher
performance and power efficiency. The underlying SIMD
hardware is exposed via instructions such as SSE, AVX,
AVX2, AVX-512 [5]. To leverage this hardware support,
the required software changes are referred to as Vector-
ization. Specifically, it is the process of converting a
program from a scalar implementation, which performs
one instruction on one data item, to a vector implemen-
tation, which performs a single instruction on multiple
data items.

Vectorization could be applied to loops that operate
iteratively on arrays by changing operations on single
array elements to vector operations on multiple elements.
Considering the following example:

1 int A[1024], B[1024], C[1024];
2 for (i = 0; i < 1024; i++)
3 {
4 C[i] = A[i]*B[i];
5 }

Listing 1: Before Vectorization

If the CPU supports vector instructions with a width
of 4, the implementation with vectorized approach could
be represented as:

1 int A[1024], B[1024], C[1024];
2 for (i = 0; i < 1024; i+=4)
3 {
4 C[i:i+4] = A[i:i+4]*B[i:i+4]; // Vector

Instruction with a vector width of 4
5 }

Listing 2: After Vectorization

However, loops are not always vectorizable due to data
dependencies across multiple iterations. Loop Distribu-
tion, which involves splitting a single loop into multiple
loops, might be able to expose better vectorization oppor-
tunities. For example, if we have the following loop:

1 int A[N], B[N], C[N], D[N], E[N];



2 for (int i = 0; i < N; i++)
3 {
4 A[i+1] = A[i] + B[i]; // S1
5 C[i] = D[i] * E[i]; // S2
6 }

Listing 3: Before Distribution

This loop will be split into two loops between state-
ments S1 and S2:

1 int A[N], B[N], C[N], D[N], E[N];
2 for (int i = 0; i < N; i++)
3 {
4 A[i+1] = A[i] + B[i]; // S1
5 }
6 for (int i = 0; i < N; i++)
7 {
8 C[i] = D[i] * E[i]; // S2
9 }

Listing 4: After Distribution

After loop distribution, now we can vectorize the loop
containing S2.

2.1.2 State-of-the-Art Loop Vectorization and Dis-
tribution Techniques

The available set of vector instructions and their vector
widths are processor-dependent. So, it is not practical to
manually configure loop vectorization and distributions.

For loop vectorization, modern compilers like LLVM
provide loop vectorizers that use a cost model to deter-
mine if the loop is safe and profitable to vectorize and
select the vector width [6]. Unfortunately, the cost models
estimate the cost of different instructions with pre-defined
heuristics, which leads to sub-optimal results in prac-
tice [3]. Another commonly used approach is Polly [2],
which utilizes the polyhedral model for loop optimization.
However, the process of constructing polyhedral repre-
sentations simplifies the loop vectorization decisions. So
far, the major contribution of Polly is tiling and loop
fusion to improve data locality.

Loop distribution is currently not enabled by default in
the optimizer because it can hurt performance when a pre-
mature distribution is applied. For example, instruction-
level parallelism could be reduced in Listing 4 compared
to Listing 3. This conservative approach can again lead to
sub-optimal performance, and meanwhile, it reveals the
difficulty of making these loop optimization decisions
with existing approaches.

The two key questions here are: How to characterize
the loops? How to use these characteristics to predict
and make optimal loop optimization decisions? 2.2 will
answer the first question and 2.3 will answer the second.

2.2 Code2Vec

Code2Vec [1] is a neural network model that relies
on Natural Language Processing (NLP) for representing
snippets of code as continuous distributed vectors. A
code snippet is represented as a single fixed-length code
vector that is used to predict semantic properties of the
snippet. The Code2Vec network architecture is shown in
Figure 1.

Figure 1: Architecture of Code2Vec network

The code is first decomposed into a collection of paths
in its Abstract Syntax Tree (AST). An AST for a code
snippet C is represented as < N,T,X ,s,δ,φ > where N is
a set of nonterminal nodes, T is a set of terminal nodes, X
is a set of values, s ∈ N is the root node, δ : N → (N∪T )∗

is a function that maps a nonterminal node to a list of its
children and φ : T → X is a function that maps a terminal
node to an associated value. AST paths are defined in
AST, an AST path p of length k is represented of the form:
n1d1...nkdknk+1 where n1,nk+1 ∈ T are starting terminal
start(p) and ending terminal end(p), for i ∈ [2..k] : ni ∈
N are nonterminals and for i ∈ [1..k] : di ∈ {↑,↓} are
movement directions. An AST path is further expressed
as a path-context < xs, p,xt > where xs = φ(start(p))
and xt = φ(end(p)) are the values associated with the
start and end terminals of p.

Based on the AST of code, a code snippet C is repre-
sented a set of path-contexts to be fed into the neural net-
work. For each path-context bi, three embeddings are con-
catenated to a single context vector ci: ci = embedding(<
xs, p j,xt >) = [valuevocabs;pathvocab j;valuevocabt ]
where p j ∈ P is a connecting path. The three embed-
dings are learnt from the Path-Attention Model. Then in
the fully connected layer, a combined context vector is
produced:

c̃i = tanh(W · ci) (1)

where W is a learnt weights matrix. Next in the attention
mechanism, an attention weight αi for each combined

2



context vector c̃i is computed as:

αi =
exp(c̃T

i ·a)
∑

n
j=1 exp(c̃T

j ·a)
(2)

where attention vector a is initialized randomly and learnt
with the network. With the combined context vectors and
attention weights, the whole code snippet is represented
as a aggregated code vector:

v =
n

∑
i=1

αi · c̃i (3)

The prediction is preformed using the code vector to
compute a dot product between the code vector v and
each of the tag embeddings.

2.3 Reinforcement Learning

2.3.1 Intro

We consider a Markov Decision Process (MDP) of
state S, action A, a reward function R : S×A → R and
transition dynamics P : S×A×S → [0,1]. The reinforce-
ment learning (RL) agent trains a policy π : S×A→ [0,1]
and uses reward R obtained in environment to improve
the policy π.

Apart from RL, it might be possible to apply super-
vised learning methods to predict loop optimization fac-
tors. However, it would take a large amount of time to
search for all the possible ones to find out the optimal
factors, especially when the sample size is huge. That’s
exactly why we apply RL to solve this problem. RL agent
can easily search an action space and co-optimize several
objectives such as code size, compilation time and so
on. And after iterations, RL agent can obtain an optimal
policy for predicting loop optimization factors.

2.3.2 PPO

Proximal policy optimization [4] is an excellent
method for generating consistent and easily operating
policies in RL. Normal policy gradient methods can only
perform one update of gradient per data sample, while
PPO is capable of implementing several epochs of mini-
batch updates. For each step, it generates an update of the
gradient to minimize the cost while providing a relatively
small deviation from previous policies. PPO has a lot
of benefits like trust region policy optimization, and it’s
even more effortless to implement with a better sample
complexity in general. It is well-tested on various bench-
marks such as simulated robotic locomotion and Atari

game playing, and outshines other online policy gradient
methods.

Here, we use this main objective function to define it
as

LCLIP(θ) = Êt [min(rt(θ)Ât ,clip(rt(θ),1− ε,1+ ε)Ât)]
(4)

where θ denotes the policy parameter. rt(θ) is the proba-
bility ratio under new and old policies, respectively. Êt is
the empirical expectation over timestamps. Ât is an esti-
mator of the advantage at timestamp t.The ε represents a
value of hyperparameter, which is 0.1 or 0.2 in normal
cases. This formula takes the minimum of both clipped
and unclipped objectives, and the final objective will be
the lower bound of unclipped objectives.

3 Method

The pipeline of our method is illustrated in Figure 2.
The code of loops are fed into the feature construction
part as the input. This part consists of code embedding
generator and numerical features generator. Constructed
features will be fed to the RL agent which uses PPO to
generate the policy-determined vectorization and distribu-
tion pragmas. Loops with injected pragmas are compiled
and executed, and the execution time along with the base-
line time are used to calculate the reward of RL agent.
The agent uses the reward to improve the policy and the
optimal policy will be reached after iterations. In the fol-
lowing subsections, we are going to explain the details
of each part.

Figure 2: Pipeline of the method

3.1 Feature Construction

We generate code embeddings with Code2Vec as dis-
cussed in 2.2. Besides, we extract static numeric features
through LLVM loop passes. Specifically, we will record
the following features for each loop: loop depth, num-
ber of basic blocks, number of branches, number of total
instructions, number of integer instructions, number of

3



floating-point instructions, number of stores, and number
of loads.

When there is a nested loop, we only consider the
innermost loop. Then, we compare the training process
with and without these numeric features.

3.2 RL Problem Formulation
To formulate this problem as a RL problem, we define

(S,A,P,R) as follows.
The purpose of our method is to obtain an optimal

policy to accelerate the execution of the loop code, so we
use the normalized difference in the execution time as
the reward. tbaseline is the execution time when compiling
with LLVM’s baseline optimization, and tRL is the execu-
tion time when compiling with the injected pragmas by
the policy. However, because different loops’ execution
time vary a lot, we need to normalize tbaseline − tRL with
the baseline execution time tbaseline. Therefore, we define
the reward as

R = (tbaseline − tRL)/tbaseline (5)

In addition to the execution time of the loops, compi-
lation time also needs to be taken into consideration. To
avoid the compilation taking too much time, we limit it
to ten times the time of compiling with LLVM’s baseline
optimization. The reward is set as -9 to penalize longer
compilation time.

Action A is defined as the combination of VF, IF and
DF which are picked from the following values:

V F ∈ [1,2,4,8,16,32,64]
IF ∈ [1,2,4,8,16,32,64]

DF ∈ [”enable”,”disable”]
(6)

State S is defined as the embedding vectors and numer-
ical features of the code. Given a state and an action, the
change of the embedding vectors and numerical features
should be deterministic, so the transition dynamics P of
RL agent is also deterministic, which means transitioning
to the next state with 100% probability.

3.3 Dataset Description
The reinforcement learning agent requires a lot of code

samples for training. Studies show that code that is not
restricted to loops only will slow down training due to
long compilation time [3]. In addition, the number of
open-source benchmarks available for training is very
small. As a result, the dataset used in training the RL
agent is consist of code with synthetic loops only. There

are 7812 synthetic loops examples in the training set and
278 in the testing set where they differ by the names of
the parameters, the stride, the number of iterations, the
functionality, the instructions and the number of nested
loops.

1 //#pragma clang loop vectorize_width(VF)
interleave_count(IF) distribute(DF)

2 int i;
3 for (i=0; i<64; i++){
4 sum[i] = in1[i] +in2[i];
5 }

Listing 5: Code Example 1

1 int i,j;
2 for (i = 0; i < 64; i++) {
3 int result = 0;
4 //#pragma clang loop vectorize_width(VF)

interleave_count(IF) distribute(DF)
5 for (j = 0; j < 2048; j+=8) {
6 result += (A[i][j] *B[i][j]);
7 }
8 out[i] = result;
9 }

Listing 6: Code Example 2

Listing 5 shows an example of the code sample that
contains a single for loop which iterates 64 times. The
commented pragma line is what the RL agent is going to
inject. Listing 6 shows an example of nested loop. The
pragma line will be inserted before the innermost loop.

4 Evaluation

4.1 Experiments Setup
The model is evaluated based on the reward mean,

which is the average reward that the model gets over batch
size in each training step. A positive value means that the
model is better than the baseline. We have explored two
different definitions of optimization. One contains vector-
ization factors (VF+IF), while another contains both the
vectorization factors and the distribution factor (DF). We
have also explored different choices of selecting features.
We have tried to train the model only with the features
generated from Code2Vec, as well as adding numerical
features that we collected from writing our own LLVM
passes. Lastly, we tune the hyper-parameter in training
to explore the best model with learning rate, the sizes of
batch and hidden layer.

4.2 Results
We train two models. One only optimizes loop vector-

ization, the other one optimizes both loop vectorization

4



and distribution. Figure 3 illustrates each training step’s
reward of the two models. After 100k steps, the latter
one outperforms the former one. It implies that adding
distribution optimization improves model’s performance.

To get the best model, we tune hyperparameters in-
cluding the size of hidden layers, learning rate, and batch
size. Figure 4, 5, 6 shows that the best hyperparameters
among the ones we have tried are 32x32, 5e-4, 500. We
use these hyperparameters in the following experiments.

To further optimize the model’s performance, we feed
numerical features generated by LLVM pass to the model.
Apart from directly using the vector consisting of 8 fea-
tures, to make numerical features have more influence
on the model’s output, we also extend the numerical fea-
ture vector by copying each feature 24 times to form a
vector of length 200 (8 × 25). We concatenate the un-
extended or extended vectors with the code embedding
vector, and feed this feature vector into the RL agent to
do the training.

Figure 7 shows that adding the numerical features
decreases the model’s performance, and the extended
numerical features have worse influence on the perfor-
mance. The reason for this might be the numerical fea-
tures we generate don’t contribute to the optimization, but
adding more distractions to the model harms the model’s
performance.

The model’s performance on test set is very similar to
that on training set, which is illustrated by Figure 8. Com-
pared to the model only optimizing vectorization, adding
distribution optimization improves the performance, but
feeding numerical features into the model harms the per-
formance.

Figure 3: Reward of training

5 Related Work

Compilers translate programming languages written
by humans into binary executable by computer hardware.
Machine learning is a field of artificial intelligence aimed

Figure 4: Tuning size of hidden layer

Figure 5: Tuning learning rate

Figure 6: Tuning batch size

Figure 7: Reward of training when numerical features
are added

5



Figure 8: Reward of test

at detecting and predicting patterns. In fact, the use of
machine learning in compiler optimization is a natural fit
and has developed into an established research domain.
Machine-learning compilation is becoming increasingly
popular due to the automatic nature of machine learn-
ing and the need for new ways to bridge the software
gap caused by the increasing potential performance of
hardware [8].

Reinforcement learning is a specific type of machine
learning that learns from trials and errors. There are a
lot of factors and different optimization techniques in
the field of compiler optimization. Reinforcement learn-
ing is a powerful tool to efficiently explore and improve
different strategies by trying out as many optimization
factors as possible. Ultimately, it will come up with an
optimal policy that has been improved from past experi-
ence. There has been many studies and experiments on
using RL to optimize compiler [7].

6 Conclusion

In this project, our goal is to use RL to generate vec-
torization and distribution optimization factors to reduce
loop’s execution time. We have applied Code2Vec frame-
work and developed a LLVM pass to generate loop fea-
tures of code. Then we have applied PPO, a RL method,
to predict the optimal factors and inject vectorization and
distribution pragmas into the source code. We have eval-
uated the performance with vectorization only and vec-
torization together with distribution, and noticed the per-
formance was improved with distribution optimization.
We tuned hyperparameters to find the best model. Fur-
thermore, we experimented with different feature sets to
evaluate the performance. Our result showed that adding
some numerical static features generated from LLVM
loop passes did not contribute to improving the optimiza-

tion performance. Generating more features suitable for
the loop optimization problem may be benefiting the
optimization, which can be a future plan.

References
[1] ALON, U., ZILBERSTEIN, M., LEVY, O., AND YAHAV, E.

code2vec: Learning distributed representations of code. Proceed-
ings of the ACM on Programming Languages 3, POPL (2019),
1–29.

[2] GROSSER, T., GROESSLINGER, A., AND LENGAUER, C.
Polly—performing polyhedral optimizations on a low-level
intermediate representation. Parallel Processing Letters 22, 04
(2012), 1250010.

[3] HAJ-ALI, A., AHMED, N. K., WILLKE, T., SHAO, Y. S.,
ASANOVIC, K., AND STOICA, I. Neurovectorizer: End-to-end
vectorization with deep reinforcement learning. In Proceedings of
the 18th ACM/IEEE International Symposium on Code Genera-
tion and Optimization (New York, NY, USA, 2020), CGO 2020,
Association for Computing Machinery, p. 242–255.

[4] J. SCHULMAN, F. WOLSKI, P. D. A. R., AND KLIMOV, O. Prox-
imal policy optimization algorithms. arXiv preprint, 1707.06347
(2017).

[5] LOMONT, C. Introduction to intel advanced vector extensions.

[6] MASTEN, M., TYURIN, E., MITROPOULOU, K., GARCIA, E.,
AND SAITO, H. Function/kernel vectorization via loop vector-
izer. In 2018 IEEE/ACM 5th Workshop on the LLVM Compiler
Infrastructure in HPC (LLVM-HPC) (2018), pp. 39–48.

[7] TROFIN, M., QIAN, Y., BREVDO, E., LIN, Z., CHOROMANSKI,
K., AND LI, D. Mlgo: a machine learning guided compiler opti-
mizations framework, 2021.

[8] WANG, Z., AND O’BOYLE, M. Machine learning in compiler
optimisation, 2018.

6


	Introduction
	Backgroud
	Vectorization and Distribution
	Intro
	State-of-the-Art Loop Vectorization and Distribution Techniques

	Code2Vec
	Reinforcement Learning
	Intro
	PPO


	Method
	Feature Construction
	RL Problem Formulation
	Dataset Description

	Evaluation
	Experiments Setup
	Results

	Related Work
	Conclusion

